ATMP POWDER Bisley International LLC Chemwatch: **10747** Version No: **7.1.1.1** Safety Data Sheet according to OSHA HazCom Standard (2012) requirements Chemwatch Hazard Alert Code: 3 Issue Date: **12/12/2020** Print Date: **09/03/2021** S.GHS.USA.EN #### **SECTION 1 Identification** #### **Product Identifier** | Product name | ATMP POWDER | | |-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--| | Chemical Name | aminotris(methylenephosphonic acid) | | | Synonyms | C3-H12-N-O9-P3; ATMP; phosphonic acid, [nitrilotris(methylene)]tri; amino tri(methyl phosphonic acid); amino tris(methyl phosphonic acid); nitrilotris(methylene phosphonic acid; nitrilotris(methylene triphosphonic acid); nitrilotris(methyl phosphonic acid); tris(phosphonomethyl) amine; phosphonates; ROP 00 ROP00 Ferrophos 509 Dowell L37 | | | Proper shipping name | Corrosive solid, acidic, organic, n.o.s. (contains aminotris(methylenephosphonic acid)) | | | Chemical formula | C3H12NO9P3 | | | Other means of identification | Not Available | | | CAS number | 6419-19-8 | | #### Recommended use of the chemical and restrictions on use #### Relevant identified uses Used in the manufacture of deflocculants and sequestrants. Phosphonates are a class of chelating agents and scale inhibitors. They are used in household cleaning products, personal care products, institutional cleaners and industrial cleaning processes, and as water treatment additives in various applications. Phosphonates are thought to achieve scale inhibition by adsorbing onto specific crystallographic planes of a growing crystal nucleus after a nucleation event. This adsorption prevents further crystal growth and agglomeration into larger aggregates Three acids, aminotris(methylene phosphonic acid) (ATMP), 1-hydroxyethylidene diphosphonic acid (HEDP), ethylenediaminetris(methylene phosphonic acid (EDTMP) and diethylenetriamine penta(methylene phosphonic acid (DTPMP), are representative of the parent compound. A fourth acid 2-phosphonobutane-1,2,4-tricarboxylic acid (PBTC) is one of the most widely used scale inhibitors in the cooling water treatment industry. #### Name, address, and telephone number of the chemical manufacturer, importer, or other responsible party | Registered company name | Bisley International LLC | | |-------------------------|------------------------------------------------------------------------------|--| | Address | 1790 Hughes Landing Boulevard Suite 400 The Woodlands TX 77380 United States | | | Telephone | 1 (844) 424 7539 | | | Fax | Not Available | | | Website | www.bisley.biz | | | Email | compliance@bisley.biz | | #### **Emergency phone number** | <u> </u> | | | | |-----------------------------------|--------------------------|------------------------------|--| | Association / Organisation | Bisley International LLC | CHEMWATCH EMERGENCY RESPONSE | | | Emergency telephone numbers | +1 855 237 5573 | +61 2 9186 1132 | | | Other emergency telephone numbers | +61 2 9186 1132 | +1 855-237-5573 | | Once connected and if the message is not in your prefered language then please dial 01 Una vez conectado y si el mensaje no está en su idioma preferido, por favor marque 02 #### SECTION 2 Hazard(s) identification #### Classification of the substance or mixture Considered a Hazardous Substance by the 2012 OSHA Hazard Communication Standard (29 CFR 1910.1200). Classified as Dangerous Goods for transport purposes. #### NFPA 704 diamond Note: The hazard category numbers found in GHS classification in section 2 of this SDSs are NOT to be used to fill in the NFPA 704 diamond. Blue = Health Red = Fire Yellow = Reactivity White = Special (Oxidizer or water reactive substances) Classification Corrosive to Metals Category 1, Chronic Aquatic Hazard Category 4, Serious Eye Damage/Eye Irritation Category 1, Skin Corrosion/Irritation Category 1B Issue Date: 12/12/2020 Print Date: 09/03/2021 #### Hazard pictogram(s) | Signal word | Dange | |-------------|-------| | Signal word | Dange | #### Hazard statement(s) | H290 | May be corrosive to metals. | | |------|---------------------------------------------------------|--| | H413 | May cause long lasting harmful effects to aquatic life. | | | H314 | Causes severe skin burns and eye damage. | | #### Hazard(s) not otherwise classified Not Applicable ### Precautionary statement(s) Prevention | P260 | Do not breathe dust/fume. | | |------|----------------------------------------------------------------------------|--| | P280 | Wear protective gloves/protective clothing/eye protection/face protection. | | | P234 | Keep only in original container. | | | P273 | Avoid release to the environment. | | #### Precautionary statement(s) Response | P301+P330+P331 | IF SWALLOWED: Rinse mouth. Do NOT induce vomiting. | | |----------------|----------------------------------------------------------------------------------------------------------------------------------|--| | P303+P361+P353 | F ON SKIN (or hair): Remove/Take off immediately all contaminated clothing. Rinse skin with water/shower. | | | P305+P351+P338 | IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. | | | P310 | Immediately call a POISON CENTER or doctor/physician. | | | P363 | Wash contaminated clothing before reuse. | | | P390 | Absorb spillage to prevent material damage. | | | P304+P340 | IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing. | | #### Precautionary statement(s) Storage P405 Store locked up. #### Precautionary statement(s) Disposal Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation. ### **SECTION 3 Composition / information on ingredients** ### Substances | CAS No | %[weight] | Name | |-----------|-----------|-------------------------------------| | 6419-19-8 | >98 | aminotris(methylenephosphonic acid) | #### Mixtures See section above for composition of Substances ### SECTION 4 First-aid measures | Description of first aid measur | es | |---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Eye Contact | If this product comes in contact with the eyes: Immediately hold eyelids apart and flush the eye continuously with running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Continue flushing until advised to stop by the Poisons Information Centre or a doctor, or for at least 15 minutes. Transport to hospital or doctor without delay. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. | | Skin Contact | If skin or hair contact occurs: Immediately flush body and clothes with large amounts of water, using safety shower if available. Quickly remove all contaminated clothing, including footwear. Wash skin and hair with running water. Continue flushing with water until advised to stop by the Poisons Information Centre. Transport to hospital, or doctor. | | Inhalation | If fumes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor. Inhalation of vapours or aerosols (mists, fumes) may cause lung oedema. | Chemwatch: 10747 Page 3 of 10 Issue Date: 12/12/2020 Version No: 7.1.1.1 ATMP POWDER Print Date: 09/03/2021 | | Corrosive substances may cause lung damage (e.g. lung oedema, fluid in the lungs). As this reaction may be delayed up to 24 hours after exposure, affected individuals need complete rest (preferably in semi-recumbent posture) and must be kept under medical observation even if no symptoms are (yet) manifested. Before any such manifestation, the administration of a spray containing a dexamethasone derivative or beclomethasone derivative may be considered. This must definitely be left to a doctor or person authorised by him/her. (ICSC13719) | |-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Ingestion | For advice, contact a Poisons Information Centre or a doctor at once. Urgent hospital treatment is likely to be needed. If swallowed do NOT induce vomiting. If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. Observe the patient carefully. Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink. Transport to hospital or doctor without delay. | #### Most important symptoms and effects, both acute and delayed See Section 11 #### Indication of any immediate medical attention and special treatment needed Treat symptomatically. The physicochemical properties of phosphonic acid compounds, notably their high polarity, charge and complexing power, suggests that they will not be readily absorbed from the gastrointestinal tract. This is supported by experimental data which confirm that absorption after oral exposure is low, averaging 2-7% in animals and 2-10% in humans. Faecal elimination of unabsorbed material predominates after ingestion (up to 90% of dose). Renal clearance of any material absorbed from the gut is rapid, with urinary half-lives of 5 hr and 70 hr reported. This second phase of excretion may represent mobilization of material. Initially sequestered by bone, since deposition studies have shown preferential accumulation of these substances in the epiphyseal plate and other regions of the long bones *in vivo*. Around 25% of material absorbed following an oral dose is excreted unchanged in urine, with the reminder converted to an N-methyl derivative or unidentified product(s). Inconsistent data indicate conversion to carbon dioxide is negligible. More pronounced accumulation is observed in bone after i.v. or i.p. injection, reflecting enhanced bioavailability following exposure by these non-physiological routes. Based on the available data, no major differences appear to exist between animals and humans with regard to the absorption, distribution and elimination of phosphonic acid compounds *in vivo*. ATMP acid and ATMP salts are poorly absorbed from the gut and rapidly eliminated after oral and i.v. administration. Faeces represent the principal route of excretion after oral administration with trace amounts present in urine and carcass. Faeces elimination was, in contrast, comparatively insignificant after i.v. injection, with the majority of the dose present either in urine or carcass. Bone is the only tissue that exhibits deposition of test-substance derived radioactivity. Absorption after dermal exposure was very low and only trace amounts were found in urine, faeces and carcass. The main route of excretion was via the urine in the first 24 hours following application. Gastro-intestinal absorption of HEDP acid and HEDP salts is rat, dog, rabbit and monkey is low, with the majority of the dose excreted in faeces and a substantial amount excreted via the urine. The remainder of the test substance derived radioactivity deposited mainly in the bones. After i.v. or i.p. injection, internal body burdens increased, presumably reflecting greater systemic availability Very limited information is available on the absorption, distribution, metabolism and elimination of DTPMP acid and DTPMP salts. For acute or short term repeated exposures to strong acids - Airway problems may arise from laryngeal edema and inhalation exposure. Treat with 100% oxygen initially. - Respiratory distress may require cricothyroidotomy if endotracheal intubation is contraindicated by excessive swelling - Intravenous lines should be established immediately in all cases where there is evidence of circulatory compromise. - Strong acids produce a coagulation necrosis characterised by formation of a coagulum (eschar) as a result of the dessicating action of the acid on proteins in specific tissues. INGESTION: - Immediate dilution (milk or water) within 30 minutes post ingestion is recommended. - ▶ DO NOT attempt to neutralise the acid since exothermic reaction may extend the corrosive injury. - Be careful to avoid further vomit since re-exposure of the mucosa to the acid is harmful. Limit fluids to one or two glasses in an adult. - Charcoal has no place in acid management. - Some authors suggest the use of lavage within 1 hour of ingestion. #### SKIN: - ▶ Skin lesions require copious saline irrigation. Treat chemical burns as thermal burns with non-adherent gauze and wrapping. - Deep second-degree burns may benefit from topical silver sulfadiazine. #### EYE: - ▶ Eye injuries require retraction of the eyelids to ensure thorough irrigation of the conjuctival cul-de-sacs. Irrigation should last at least 20-30 minutes. DO NOT use neutralising agents or any other additives. Several litres of saline are required. - Cycloplegic drops, (1% cyclopentolate for short-term use or 5% homatropine for longer term use) antibiotic drops, vasoconstrictive agents or artificial tears may be indicated dependent on the severity of the injury. - ▶ Steroid eye drops should only be administered with the approval of a consulting ophthalmologist). [Ellenhorn and Barceloux: Medical Toxicology] #### **SECTION 5 Fire-fighting measures** ### Extinguishing media - ► Water spray or fog. - ► Foam. - Dry chemical powder. - ► BCF (where regulations permit). #### Special hazards arising from the substrate or mixture Fire Incompatibility ▶ Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result #### Special protective equipment and precautions for fire-fighters Fire Fighting - Alert Fire Brigade and tell them location and nature of hazard. - Wear full body protective clothing with breathing apparatus. Prevent, by any means available, spillage from entering drains or water course. - Prevent, by any means available, spillage from entering or Use fire fighting procedures suitable for surrounding area. Chemwatch: **10747**Version No: **7.1.1.1** Page **4** of **10** ATMP POWDER Issue Date: 12/12/2020 Print Date: 09/03/2021 ## Fire/Explosion Hazard - Combustible - Slight fire hazard when exposed to heat or flame. - Acids may react with metals to produce hydrogen, a highly flammable and explosive gas. Heating may cause expansion or decomposition leading to violent rupture of containers. Combustion products include: carbon monoxide (CO) carbon dioxide (CO2) nitrogen oxides (NOx) phosphorus oxides (POx) other pyrolysis products typical of burning organic material. #### **SECTION 6 Accidental release measures** #### Personal precautions, protective equipment and emergency procedures See section 8 #### **Environmental precautions** See section 12 #### Methods and material for containment and cleaning up Drains for storage or use areas should have retention basins for pH adjustments and dilution of spills before discharge or disposal of material. Check regularly for spills and leaks. - **Minor Spills** - Clean up all spills immediately. - Avoid contact with skin and eyes. - Wear protective clothing, gloves, safety glasses and dust respirator. - Use dry clean up procedures and avoid generating dust. - Major Spills - ▶ Clear area of personnel and move upwind. - Alert Fire Brigade and tell them location and nature of hazard. - Wear full body protective clothing with breathing apparatus. - Prevent, by any means available, spillage from entering drains or water course. Personal Protective Equipment advice is contained in Section 8 of the SDS. #### **SECTION 7 Handling and storage** #### Precautions for safe handling - Avoid all personal contact, including inhalation. - Wear protective clothing when risk of exposure occurs. - Use in a well-ventilated area. - Safe handling - Avoid contact with moisture. Organic powders when finely divided over a range of concentrations regardless of particulate size or shape and suspended in air or some other oxidizing medium may form explosive dust-air mixtures and result in a fire or dust explosion (including secondary explosions) - Minimise airborne dust and eliminate all ignition sources. Keep away from heat, hot surfaces, sparks, and flame. - ► Establish good housekeeping practices. - ▶ Remove dust accumulations on a regular basis by vacuuming or gentle sweeping to avoid creating dust clouds. #### Other information - Store in original containers. - Keep containers securely sealed. - Store in a cool, dry, well-ventilated area. - ▶ Store away from incompatible materials and foodstuff containers. #### Conditions for safe storage, including any incompatibilities Avoid brass, copper. - DO NOT use aluminium or galvanised containers - Check regularly for spills and leaks - Lined metal can, lined metal pail/ can. - Plastic pail. - Polyliner drum. - Packing as recommended by manufacturer. #### Suitable container - For low viscosity materials - Drums and jerricans must be of the non-removable head type. Where a can is to be used as an inner package, the can must have a screwed enclosure. - For materials with a viscosity of at least 2680 cSt. (23 deg. C) and solids (between 15 C deg. and 40 deg C.): - Removable head packaging; - Cans with friction closures and - low pressure tubes and cartridges may be used. #### Storage incompatibility - ▶ Reacts with mild steel, galvanised steel / zinc producing hydrogen gas which may form an explosive mixture with air. - Avoid strong bases - Segregate from alkalies, oxidising agents and chemicals readily decomposed by acids, i.e. cyanides, sulfides, carbonates. - X Must not be stored together - May be stored together with specific preventions - May be stored together Issue Date: 12/12/2020 Print Date: 09/03/2021 #### **SECTION 8 Exposure controls / personal protection** #### Control parameters Occupational Exposure Limits (OEL) INGREDIENT DATA Not Available #### **Emergency Limits** | aminotris(methylenephosphonic acid) 30 mg/m3 69 mg/m3 420 mg/m3 | Ingredient | TEEL-1 | TEEL-2 | TEEL-3 | |-----------------------------------------------------------------|------------|----------|----------|-----------| | | | 30 mg/m3 | 69 mg/m3 | 420 mg/m3 | | Ingredient | Original IDLH | Revised IDLH | |-------------------------------------|---------------|---------------| | aminotris(methylenephosphonic acid) | Not Available | Not Available | #### **Exposure controls** ## Appropriate engineering controls Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are: Process controls which involve changing the way a job activity or process is done to reduce the risk. Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. #### Personal protection - Chemical goggles. - Eye and face protection Full face shield may be required for supplementary but never for primary protection of eyes. - Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. #### Skin protection #### See Hand protection below ## Wear chemical protective gloves, e.g. PVC.Wear safety footwear or safety gumboots, e.g. Rubber #### Hands/feet protection The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application. The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice. Personal hygiene is a key element of effective hand care. #### Body protection #### See Other protection below #### Other protection - Overalls.PVC Apron. - ▶ PVC protective suit may be required if exposure severe. - ► Evewash unit. #### Respiratory protection - Respirators may be necessary when engineering and administrative controls do not adequately prevent exposures. - The decision to use respiratory protection should be based on professional judgment that takes into account toxicity information, exposure measurement data, and frequency and likelihood of the worker's exposure ensure users are not subject to high thermal loads which may result in heat stress or distress due to personal protective equipment (powered, positive flow, full face apparatus may be an option). - Published occupational exposure limits, where they exist, will assist in determining the adequacy of the selected respiratory protection. These may be government mandated or vendor recommended. - Certified respirators will be useful for protecting workers from inhalation of particulates when properly selected and fit tested as part of a complete respiratory protection program. - ▶ Use approved positive flow mask if significant quantities of dust becomes airborne. - Try to avoid creating dust conditions. #### **SECTION 9 Physical and chemical properties** #### Information on basic physical and chemical properties | Appearance | White solid; mixes with water. Normally available as a liquid with slight aromatic odour; mixes with water. | | | |----------------------------------------------|-------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------------| | | | | | | Physical state | Divided Solid | Relative density (Water = 1) | Not available. | | Odour | Not Available | Partition coefficient n-octanol / water | Not Available | | Odour threshold | Not Available | Auto-ignition temperature (°C) | Not available. | | pH (as supplied) | Not Applicable | Decomposition temperature | Not Available | | Melting point / freezing point (°C) | Not available. | Viscosity (cSt) | Not Applicable | | Initial boiling point and boiling range (°C) | Not Applicable | Molecular weight (g/mol) | 299.07 | | Flash point (°C) | Not available. | Taste | Not Available | Chemwatch: 10747 Page 6 of 10 Version No: 7.1.1.1 ATMP POWDER Issue Date: 12/12/2020 Print Date: 09/03/2021 | Evaporation rate | Not Applicable | Explosive properties | Not Available | |---------------------------|----------------|----------------------------------|----------------| | Flammability | Not available. | Oxidising properties | Not Available | | Upper Explosive Limit (%) | Not available. | Surface Tension (dyn/cm or mN/m) | Not Applicable | | Lower Explosive Limit (%) | Not available. | Volatile Component (%vol) | Negligible | | Vapour pressure (kPa) | Negligible | Gas group | Not Available | | Solubility in water | Miscible | pH as a solution (1%) | <2 | | Vapour density (Air = 1) | Not Applicable | VOC g/L | Not Available | #### **SECTION 10 Stability and reactivity** | Reactivity | See section 7 | |------------------------------------|-----------------------------------------------| | Chemical stability | Contact with alkaline material liberates heat | | Possibility of hazardous reactions | See section 7 | | Conditions to avoid | See section 7 | | Incompatible materials | See section 7 | | Hazardous decomposition products | See section 5 | #### **SECTION 11 Toxicological information** | Information on toxicological ef | fects | |---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Inhaled | Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled. If prior damage to the circulatory or nervous systems has occurred or if kidney damage has been sustained, proper screenings should be conducted on individuals who may be exposed to further risk if handling and use of the material result in excessive exposures. Corrosive acids can cause irritation of the respiratory tract, with coughing, choking and mucous membrane damage. There may be dizziness, headache, nausea and weakness. Inhalation of quantities of liquid mist may be extremely hazardous, even lethal due to spasm, extreme irritation of larynx and bronchi, chemical pneumonitis and pulmonary oedema. | | Ingestion | The material can produce chemical burns within the oral cavity and gastrointestinal tract following ingestion. Although ingestion is not thought to produce harmful effects (as classified under EC Directives), the material may still be damaging to the health of the individual, following ingestion, especially where pre-existing organ (e.g. liver, kidney) damage is evident. The phosphonic acid compounds ATMP, HEDP, DTPMP and their salts can be considered to be of low to moderate toxicity when swallowed. Animal testing has shown ATMP acid to be of moderate toxicity, with an oral LD50 in rat of 2910 mg active acid/kg. Ingestion of acidic corrosives may produce burns around and in the mouth, the throat and oesophagus. Immediate pain and difficulties in swallowing and speaking may also be evident. | | Skin Contact | The material can produce chemical burns following direct contact with the skin. Skin contact is not thought to have harmful health effects (as classified under EC Directives); the material may still produce health damage following entry through wounds, lesions or abrasions. The acids and salts of ATMP, HEDP and DTPMP have a low level of acute skin toxicity. ATMP acid and its salts, in testing, were found to be practically non-toxic. Open cuts, abraded or irritated skin should not be exposed to this material Skin contact with acidic corrosives may result in pain and burns; these may be deep with distinct edges and may heal slowly with the formation of scar tissue. Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected. | | Еуе | The material can produce chemical burns to the eye following direct contact. Vapours or mists may be extremely irritating. If applied to the eyes, this material causes severe eye damage. Irritation of the eyes may produce a heavy secretion of tears (lachrymation). Direct eye contact with acid corrosives may produce pain, tears, sensitivity to light and burns. Mild burns of the epithelia generally recover rapidly and completely. The phosphonic acid compounds, ATMP, HEDP, DTPMP and their salts vary in their potential to irritate the eye, from virtually non-irritating to severely irritating with irreversible effects. Animal testing showed that ATMP and its salts were at most moderate irritating, while HEDP acid was found to be severely irritating, its salts being less so. | Repeated or prolonged exposure to acids may result in the erosion of teeth, swelling and/or ulceration of mouth lining. Irritation of airways to lung, with cough, and inflammation of lung tissue often occurs. Long term exposure to high dust concentrations may cause changes in lung function i.e. pneumoconiosis, caused by particles less than 0.5 Chronic micron penetrating and remaining in the lung. Although the salt of the organophosphate has not been tested, animal testing on the free acid aminotris(methylenephosphonic) acid revealed loss in body weight and changes in the weight of the liver, spleen and kidney. | aminotris(methylenephosphonic | | |-------------------------------|--| | acid) | | | TOXICITY | IRRITATION | |--------------------------------------------------|---------------------------------| | #LD50_oral >215 mg/kg ^[2] | Eye (rabbit): 100 mg - moderate | | Dermal (rabbit) LD50: >6310 mg/kg ^[2] | Skin (rabbit): 500 mg/24h | Legend: 1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2.* Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances Chemwatch: 10747 Page 7 of 10 Issue Date: 12/12/2020 Version No: 7.1.1.1 Print Date: 09/03/2021 ATMP POWDER Print Date: 09/03/2021 tract have not been examined in this respect. Mucous secretion may protect the cells of the airway from direct exposure to inhaled acidic mists (which also protects the stomach lining from the hydrochloric acid secreted there). For ATMP (aminotris(methylenephosphonic acid)) and its salts: ATMP acid, the monosodium salt and hexasodium salts cause serious eye irritation, while the disodium to pentasodium salts do not cause eye irritation. The low pH would predict that ATMP acid should be severely irritant or corrosive to skin as well as eyes. Acute toxicity: In animals, ATMP has low acute toxicity. Sensitisation: Based on animal data and human exposure reports, ATMP is not classified with respect to skin sensitization. Toxicity after repeated exposure: Not classified. Genetic toxicity / mutation-causing potential: ATMP and its salts do not cause genetic toxicity or mutations. Cancer-causing potential: ATMP sodium salts and the acid are not expected to cause cancer. Reproductive toxicity: Based on animal testing, ATMP and its salts do not cause reproductive toxicity. Animal testing to date have not shown phosphonic acids or their salts to induce skin sensitisation. However, testing has been incomplete. < Asthma-like symptoms may continue for months or even years after exposure to the material ends. This may be due to a non-allergic condition known as reactive airways dysfunction syndrome (RADS) which can occur after exposure to high levels of highly irritating compound. Main criteria for diagnosing RADS include the absence of previous airways disease in a non-atopic individual, with sudden onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. Other criteria for diagnosis of RADS include a reversible airflow pattern on lung function tests, moderate to severe bronchial hyperreactivity on methacholine challenge testing, and the lack of minimal lymphocytic inflammation, without eosinophilia. | Acute Toxicity | × | Carcinogenicity | × | |-----------------------------------|---|--------------------------|---| | Skin Irritation/Corrosion | ✓ | Reproductivity | X | | Serious Eye Damage/Irritation | ✓ | STOT - Single Exposure | × | | Respiratory or Skin sensitisation | × | STOT - Repeated Exposure | × | | Mutagenicity | × | Aspiration Hazard | × | Legend: X − Data either not available or does not fill the criteria for classification Data available to make classification #### **SECTION 12 Ecological information** #### **Toxicity** | aminotris(methylenephosphonic
acid) | Endpoint | Test Duration (hr) | Species | Value | Source | |--|-----------|--------------------|-------------------------------|-----------|--------| | | ErC50 | 72 | Algae or other aquatic plants | 19.6mg/l | 1 | | | NOEC(ECx) | 1440 | Fish | >23mg/l | 1 | | | LC50 | 96 | Fish | 160mg/l | 2 | | | EC50 | 48 | Crustacea | 297mg/l | 1 | | | EC50 | 72 | Algae or other aquatic plants | 80mg/l | 2 | | | EC50 | 96 | Algae or other aquatic plants | 12.39mg/l | 2 | Legend: Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicity 3. EPIWIN Suite V3.12 (QSAR) - Aquatic Toxicity Data (Estimated) 4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data May cause long-term adverse effects in the aquatic environment. Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment wash-waters. Wastes resulting from use of the product must be disposed of on site or at approved waste sites. #### Ecotoxicity: The tolerance of water organisms towards pH margin and variation is diverse. Recommended pH values for test species listed in OECD guidelines are between 6.0 and almost 9. Acute testing with fish showed 96h-LC50 at about pH 3.5 For ATMP (aminotris(methylenephosphonic acid) and its salts: Environmental fate: Based on the relevant physical-chemical properties, the known uses and the fact that it is not readily biodegradable, ATMP and its salts will partition primarily to water and suspended sediments. ATMP and its salts are not expected to bioaccumulate. The extremely low vapour pressure and very high water solubility of ATMP and its salts indicate that volatilization is negligible. Biodegradation Neither readily nor inherently biodegradable Partially photodegradable over short time period Bioaccumulation potential Not potentially bioaccumulative (log Kow = -3.53) PBT / vPvB conclusion Not considered to be either PBT or vPvB ATMP is a polyphosphonic acid of molecular weight 299. For Phosphonates: log Kow Values - ATMP: -3.53; HEDP: -3.49; EDTMP: -4.10; HDTMP: -4.43; DTMP: -3.40. Environmental Fate: Phosphonates are water soluble and non-volatile with moderate to high sorption coefficients, multi-protic acidity and strong (transition) metal complexation. Orthophosphate has been found to suppress phosphonate utilization in many microorganisms, thus, many organisms preferentially use inorganic phosphate, which may explain the low biodegradability of phosphonates in synthetic test media and natural sewage systems. Phosphonate degrading bacteria can be found in almost any environment whether soil, activated sludge or river water. For Phosphate: The principal problems of phosphate contamination of the environment relates to eutrophication processes in lakes and ponds. Phosphorus is an essential plant nutrient and is usually the limiting nutrient for blue-green algae. Aquatic Fate: Lakes overloaded with phosphates is the primary catalyst for the rapid growth of algae in surface waters. Planktonic algae cause turbidity and flotation films. Prevent, by any means available, spillage from entering drains or water courses. #### Persistence and degradability | Ingredient | Persistence: Water/Soil | Persistence: Air | |-------------------------------------|-------------------------|------------------| | aminotris(methylenephosphonic acid) | HIGH | HIGH | Issue Date: 12/12/2020 Print Date: 09/03/2021 | Ingredient | Bioaccumulation | |-------------------------------------|-----------------| | aminotris(methylenephosphonic acid) | LOW (BCF = 24) | #### Mobility in soil | Ingredient | Mobility | |-------------------------------------|-------------------| | aminotris(methylenephosphonic acid) | LOW (KOC = 341.5) | #### **SECTION 13 Disposal considerations** #### Waste treatment methods Product / Packaging disposal Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked. A Hierarchy of Controls seems to be common - the user should investigate: - Reduction - ► Reuse - ► Recycling - Disposal (if all else fails) This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. - ▶ DO NOT allow wash water from cleaning or process equipment to enter drains - It may be necessary to collect all wash water for treatment before disposal. - In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first. - ▶ Where in doubt contact the responsible authority. Recycle wherever possible. - Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified. - Treat and neutralise at an approved treatment plant. Treatment should involve: Mixing or slurrying in water; Neutralisation with soda-lime or soda-ash followed by: burial in a land-fill specifically licensed to accept chemical and / or pharmaceutical wastes or Incineration in a licensed apparatus (after admixture with suitable combustible material) - ▶ Decontaminate empty containers with 5% aqueous sodium hydroxide or soda ash, followed by water. #### **SECTION 14 Transport information** #### Labels Required **Marine Pollutant** NO #### Land transport (DOT) | UN number | 3261 | | |------------------------------|---|--| | UN proper shipping name | Corrosive solid, acidic, organic, n.o.s. (contains aminotris(methylenephosphonic acid)) | | | Transport hazard class(es) | Class 8 Subrisk Not Applicable | | | Packing group | | | | Environmental hazard | Not Applicable | | | Special precautions for user | Hazard Label 8 Special provisions IB8, IP3, T1, TP33 | | #### Air transport (ICAO-IATA / DGR) | UN number | 3261 | | | | |------------------------------|--|-----------------------|---------------------------------|--| | UN proper shipping name | Corrosive solid, acidic, organic, n.o.s. * (contains aminotris(methylenephosphonic acid)) | | | | | Transport hazard class(es) | ICAO/IATA Class ICAO / IATA Subrisk ERG Code | 8 Not Applicable 8L | | | | Packing group | III | | | | | Environmental hazard | Not Applicable | | | | | Special precautions for user | Special provisions Cargo Only Packing Instructions Cargo Only Maximum Qty / Pack Passenger and Cargo Packing Instructions | | A3 A803
864
100 kg
860 | | #### ATMP POWDER Issue Date: **12/12/2020**Print Date: **09/03/2021** | Passenger and Cargo Maximum Qty / Pack | 25 kg | |---|-------| | Passenger and Cargo Limited Quantity Packing Instructions | Y845 | | Passenger and Cargo Limited Maximum Qty / Pack | 5 kg | #### Sea transport (IMDG-Code / GGVSee) | UN number | 3261 | | | |------------------------------|---|------------------------------|--| | UN proper shipping name | CORROSIVE SOLID, ACIDIC, ORGANIC, N.O.S. (contains aminotris(methylenephosphonic acid)) | | | | Transport hazard class(es) | IMDG Class 8 IMDG Subrisk No | ot Applicable | | | Packing group | III | | | | Environmental hazard | Not Applicable | | | | Special precautions for user | EMS Number Special provisions Limited Quantities | F-A , S-B
223 274
5 kg | | #### Transport in bulk according to Annex II of MARPOL and the IBC code Not Applicable #### Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code | Product name | Group | |-------------------------------------|---------------| | aminotris(methylenephosphonic acid) | Not Available | #### Transport in bulk in accordance with the ICG Code | Product name | Ship Type | |-------------------------------------|---------------| | aminotris(methylenephosphonic acid) | Not Available | #### **SECTION 15 Regulatory information** #### Safety, health and environmental regulations / legislation specific for the substance or mixture #### aminotris(methylenephosphonic acid) is found on the following regulatory lists US DOE Temporary Emergency Exposure Limits (TEELs) US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory US Toxicology Excellence for Risk Assessment (TERA) Workplace Environmental Exposure Levels (WEEL) US TSCA Chemical Substance Inventory - Interim List of Active Substances #### **Federal Regulations** ### Superfund Amendments and Reauthorization Act of 1986 (SARA) #### Section 311/312 hazard categories | Flammable (Gases, Aerosols, Liquids, or Solids) | No | |--|-----| | Gas under pressure | No | | Explosive | No | | Self-heating | No | | Pyrophoric (Liquid or Solid) | No | | Pyrophoric Gas | No | | Corrosive to metal | Yes | | Oxidizer (Liquid, Solid or Gas) | No | | Organic Peroxide | No | | Self-reactive | No | | In contact with water emits flammable gas | No | | Combustible Dust | No | | Carcinogenicity | No | | Acute toxicity (any route of exposure) | No | | Reproductive toxicity | No | | Skin Corrosion or Irritation | Yes | | Respiratory or Skin Sensitization | No | | Serious eye damage or eye irritation | Yes | | Specific target organ toxicity (single or repeated exposure) | No | | Aspiration Hazard | No | | Germ cell mutagenicity | No | # Page 10 of 10 ATMP POWDER Issue Date: **12/12/2020** Print Date: **09/03/2021** Simple Asphyxiant No Hazards Not Otherwise Classified No #### US. EPA CERCLA Hazardous Substances and Reportable Quantities (40 CFR 302.4) None Reported #### **State Regulations** #### US. California Proposition 65 None Reported #### **National Inventory Status** | National inventory Status | | | |--|---|--| | National Inventory | Status | | | Australia - AIIC / Australia
Non-Industrial Use | Yes | | | Canada - DSL | Yes | | | Canada - NDSL | No (aminotris(methylenephosphonic acid)) | | | China - IECSC | Yes | | | Europe - EINEC / ELINCS / NLP | Yes | | | Japan - ENCS | Yes | | | Korea - KECI | Yes | | | New Zealand - NZIoC | Yes | | | Philippines - PICCS | Yes | | | USA - TSCA | Yes | | | Taiwan - TCSI | Yes | | | Mexico - INSQ | Yes | | | Vietnam - NCI | Yes | | | Russia - ARIPS | Yes | | | Legend: | Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets) | | #### **SECTION 16 Other information** | Revision Date | 12/12/2020 | |---------------|------------| | Initial Date | 25/01/2003 | #### **SDS Version Summary** | • | | | |---------|------------|---| | Version | Issue Date | Sections Updated | | 6.1.1.1 | 03/05/2016 | Acute Health (eye), Acute Health (inhaled), Acute Health (skin), Acute Health (swallowed), Chronic Health, Classification, Environmental, Spills (minor), Toxicity and Irritation (Other) | | 7.1.1.1 | 12/12/2020 | Acute Health (eye), Acute Health (skin), Classification, Physical Properties | #### Other information Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered. #### **Definitions and abbreviations** PC-TWA: Permissible Concentration-Time Weighted Average PC-STEL: Permissible Concentration-Short Term Exposure Limit IARC: International Agency for Research on Cancer ACGIH: American Conference of Governmental Industrial Hygienists STEL: Short Term Exposure Limit TEEL: Temporary Emergency Exposure Limit。 IDLH: Immediately Dangerous to Life or Health Concentrations OSF: Odour Safety Factor NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors BEI: Biological Exposure Index This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.